Press Releases

Tuning the Energy Gap: A Novel Approach for Organic Semiconductors

Published on in PRESS RELEASES

illustration of different molecules against a crystal structure
Varying the ratio of 3T molecules (foreground) and 6T molecules (indicated in the background) in the blend allows tuning the gap continuously. Credit: Sebastian Hutsch, Frank Ortmann

[Deutsche Version: --> "read more"]

What is already established for inorganic semiconductors stays a challenge for their organic counterparts: Tuning the energy gap by blending different semiconducting molecules to optimize device performance. Now, scientists from TU Dresden, in cooperation with researchers at TU Munich, as well as University of Würzburg, HU Berlin, and Ulm University demonstrated how to reach this goal.

Organic semiconductors have earned a reputation as energy efficient materials in organic light emitting diodes (OLEDs) that are employed in large area displays. In these and in other applications, such as solar cells, a key parameter is the energy gap between electronic states. It determines the wavelength of the light that is emitted or absorbed. The continuous adjustability of this energy gap is desirable. Indeed, for inorganic materials an appropriate method already exists – the so-called blending. It is based on engineering the band gap by substituting atoms in the material. This allows for a continuous tunability as, for example in aluminum gallium arsenide semiconductors. Unfortunately, this is not transferable to organic semiconductors because of their different physical characteristics and their molecule-based construction paradigm, thus making continuous band gap tuning much more difficult.

However, with their latest publication scientists at the Center for Advancing Electronics Dresden (cfaed, TU Dresden) and at the Cluster of Excellence “e-conversion” at TU Munich together with partners from University of Würzburg, HU Berlin, and Ulm University for the first time realized energy-gap engineering for organic semiconductors by blending.

For inorganic semiconductors, the energy levels can be shifted towards one another by atomic substitutions, thus reducing the band gap (“band-gap engineering”). In contrast, band structure modifications by blending organic materials can only shift the energy levels concertedly either up or down. This is due to the strong Coulomb effects that can be exploited in organic materials, but this has no effect on the gap. “It would be very interesting to also change the gap of organic materials by blending, to avoid the lengthy synthesis of new molecules”, says Prof. Karl Leo from TU Dresden.

The researchers now found an unconventional way by blending the material with mixtures of similar molecules that are different in size. “The key finding is that all molecules arrange in specific patterns that are allowed by their molecular shape and size”, explains Frank Ortmann, a professor at TU Munich and group leader at the Center for Advancing Electronics Dresden (cfaed, TU Dresden). “This induces the desired change in the material´s dielectric constant and gap energy.”

The group of Frank Ortmann was able to clarify the mechanism by simulating the structures of the blended films and their electronic and dielectric properties. A corresponding change in the molecular packing depending on the shape of the blended molecules was confirmed by X-ray scattering measurements, performed by the Organic Devices Group of Prof. Stefan Mannsfeld at cfaed. The core experimental and device work was done by Katrin Ortstein and her colleagues at the group of Prof. Karl Leo, TU Dresden.

The results of this study have just been published in the renowned journal "Nature Materials". While this proves the feasibility of this type of energy-level engineering strategy, its employment will be explored for optoelectronic devices in the future.

Publication:
Band gap engineering in blended organic semiconductor films based on dielectric interactions.
Katrin Ortstein, Sebastian Hutsch, Mike Hambsch, Kristofer Tvingstedt, Berthold Wegner, Johannes Benduhn, Jonas Kublitski, Martin Schwarze, Sebastian Schellhammer, Felix Talnack, Astrid Vogt, Peter Bäuerle, Norbert Koch, Stefan C. B. Mannsfeld, Hans Kleemann, Frank Ortmann and Karl Leo. Nature Materials Published online: 10 June, 2021
DOI: 10.1038/s41563-021-01025-z
Link: https://www.nature.com/articles/s41563-021-01025-z

This research was funded by the German Research Foundation (DFG) and partly by the Cluster of Excellence e-conversion through Germany´s Excellence Strategy.

Press image:
Varying the ratio of 3T molecules (foreground) and 6T molecules (indicated in the background) in the blend allows tuning the gap continuously.
Credit: Sebastian Hutsch, Frank Ortmann

Contact Details:

Prof. Karl Leo
Dresden Integrated Center for Applied Physics and Photonic Materials
TU Dresden
Tel. +49-(0)351-463-37533
karl.leo@iapp.de
www.iapp.de

Prof. Frank Ortmann
Department of Chemistry
TU München
Tel.: +49 (0)89 289 13611
frank.ortmann@tum.de
https://www.department.ch.tum.de/tms


[Deutsche Version]

Abstimmung der Energielücke: Ein neuer Ansatz für organische Halbleiter

Was für anorganische Halbleiter bereits eine etablierte Technologie ist, blieb für ihre organischen Pendants bisher eine Herausforderung: Die Feinabstimmung ihrer Energielücke durch Mischen („Blending“) verschiedener halbleitender Moleküle, um die Leistung der resultierenden Bauelemente zu optimieren. Wissenschaftler:innen der TU Dresden haben nun in Zusammenarbeit mit Kolleg:innen der TU München sowie der Universität Würzburg, der HU Berlin und der Universität Ulm gezeigt, wie sich dieses Ziel erreichen lässt.

Organische Halbleiter haben sich als energiesparende Materialien in organischen Leuchtdioden (OLEDs), welche in großflächigen Displays eingesetzt werden, einen Namen gemacht. Viele von uns halten sie täglich in ihren Händen, wenn wir z.B. zum Handy oder Tablet greifen. Bei diesen und anderen Anwendungen, wie z. B. Solarzellen, ist die Energielücke zwischen elektronischen Zuständen ein Schlüsselparameter. Sie bestimmt die Wellenlänge des Lichts, das ausgestrahlt oder absorbiert wird. Die möglichst stufenlose Einstellbarkeit dieser Energielücke ist eine wünschenswerte Eigenschaft des Materials für dessen vielseitige technische Anwendbarkeit. Für anorganische Materialien gibt es längst eine entsprechende Methode - das sogenannte Blending. Es basiert auf der Beeinflussung der Bandlücke durch den Austausch von Atomen im Material. Dies ermöglicht eine stufenlose Abstimmbarkeit, wie z.B. bei Aluminium-Gallium-Arsenid-Halbleitern, die in Diodenlasern oder Leuchtdioden eingesetzt werden. Leider ist dies so nicht direkt auf organische Halbleiter übertragbar, da diese andere physikalische Eigenschaften haben und aus Molekülen aufgebaut sind, was eine kontinuierliche Abstimmung der Bandlücke erheblich erschwert.

In ihrer neuesten Veröffentlichung berichten Wissenschaftler:innen der TU Dresden und des Exzellenzclusters ‚e-conversion‘ (TU München) gemeinsam mit Partner:innen der Universität Würzburg, der HU Berlin und der Universität Ulm, wie sie die Einstellung der Energielücke mittels Blending für organische Halbleiter erstmals realisieren konnten.

Bei anorganischen Halbleitern lassen sich die Energieniveaus durch atomare Substitutionen gegeneinander verschieben und damit die Bandlücke verkleinern. Im Gegensatz dazu können typischerweise bei organischen Halbleitern die Energieniveaus nur konzertiert entweder nach oben oder unten verschoben werden. Das liegt an den starken Coulomb-Effekten, die in organischen Materialien zwar ausgenutzt werden können, was aber keinen Einfluss auf die Energielücke hat. "Es ist von großem Interesse, auch die Bandlücke der organischen Materialien durch Blending zu verändern, um die langwierige Synthese neuer Moleküle zu vermeiden", sagt Prof. Karl Leo von der TU Dresden.

Die Forscher fanden einen unkonventionellen Weg, indem sie zwei Halbleiter mit ähnlicher molekularer Struktur, aber unterschiedlichen Molekülgrößen miteinander mischen. „Die entscheidende Erkenntnis ist, dass sich alle Moleküle in bestimmten Mustern anordnen, die durch ihre molekulare Form und Größe bestimmt werden“, erklärt Frank Ortmann, Professor an der TU München und Gruppenleiter am Center for Advancing Electronics Dresden (cfaed, TU Dresden). „Dies führt zu der gewünschten Änderung der Dielektrizitätskonstante und der Größe der Bandlücke des Materials.“

Die Gruppe von Frank Ortmann konnte diesen Mechanismus aufklären, indem sie die Strukturen der gemischten organischen Filme und deren elektronische und dielektrische Eigenschaften simulierte. Eine entsprechende Änderung der Molekülpackung in Abhängigkeit von der Form der kombinierten Moleküle wurde durch Röntgenbeugungsmessungen bestätigt. Diese Arbeiten wurden von Wissenschaftlern der Professur für Organische Bauelemente am cfaed, geleitet von Prof. Stefan Mannsfeld, durchgeführt. Die zentralen experimentellen Arbeiten und die Erstellung der Bauelemente wurden von Katrin Ortstein und ihren Kollegen in der Gruppe von Prof. Karl Leo, TU Dresden, durchgeführt.

Damit konnte die Machbarkeit dieser Variante der Beeinflussung der Energielevel bei organischen Halbleitern bewiesen werden, und ihr zukünftiger Einsatz für optoelektronische Bauelemente wird nun in weiteren Schritten erforscht. Die Ergebnisse der Studie wurden in der renommierten Fachzeitschrift ‚Nature Materials‘ veröffentlicht.

Veröffentlichung:
Band gap engineering in blended organic semiconductor films based on dielectric interactions.
Katrin Ortstein, Sebastian Hutsch, Mike Hambsch, Kristofer Tvingstedt, Berthold Wegner, Johannes Benduhn, Jonas Kublitski, Martin Schwarze, Sebastian Schellhammer, Felix Talnack, Astrid Vogt, Peter Bäuerle, Norbert Koch, Stefan C. B. Mannsfeld, Hans Kleemann, Frank Ortmann and Karl Leo.
Nature Materials
Online veröffentlicht: 10. Juni 2021
DOI: 10.1038/s41563-021-01025-z
Link: https://www.nature.com/articles/s41563-021-01025-z

Diese Forschungsarbeit wurde von der Deutschen Forschungsgemeinschaft (DFG) und teilweise durch den Exzellenzcluster e-conversion im Rahmen der Exzellenzstrategie des Bundes gefördert.

Pressebild:

Durch Variation des Verhältnisses von 3T-Molekülen (im Vordergrund) und 6T-Molekülen (im Hintergrund angedeutet) in der Mischung lässt sich die Energielücke stufenlos einstellen. Credit: Sebastian Hutsch, Frank Ortmann

Kontakt

Prof. Karl Leo
Dresden Integrated Center for Applied Physics and Photonic Materials
TU Dresden
Tel. +49-(0)351-463-37533
karl.leo@iapp.de
www.iapp.de

Prof. Frank Ortmann
Fakultät für Chemie
TU München
Tel.: +49 (0)89 289 13611
frank.ortmann@tum.de
https://www.department.ch.tum.de/tms

Go back