skip to main content
survey

Tackling Industrial Downtimes with Artificial Intelligence in Data-Driven Maintenance

Published:23 October 2023Publication History
Skip Abstract Section

Abstract

The application of Artificial Intelligence (AI) approaches in industrial maintenance for fault detection and prediction has gained much attention from scholars and practitioners. This survey systematically assesses and classifies the state-of-the-art algorithms applied to data-driven maintenance in recent literature. The taxonomy provides a so far not existing overview and decision aid for research and practice regarding suitable AI approaches for each maintenance application. Moreover, we consider trends and further research demand in this area. Finally, a newly developed holistic maintenance framework contributes to a practice-oriented implementation of AI and considers crucial managerial aspects of an efficient maintenance system.

REFERENCES

  1. [1] Ben Abid Firas, Zgarni Slaheddine, and Braham Ahmed. 2018. Distinct bearing faults detection in induction motor by a hybrid optimized SWPT and aiNet-DAG SVM. IEEE Trans. Energy Convers. 33, 4 (2018), 16921699. Google ScholarGoogle ScholarCross RefCross Ref
  2. [2] Achiche Sofiane, Balazinski Marek, Baron Luc, and Jemielniak Krzysztof. 2002. Tool wear monitoring using genetically-generated fuzzy knowledge bases. Eng. Appl. Artif. Intell. 15, 3–4 (2002), 303314. Google ScholarGoogle ScholarCross RefCross Ref
  3. [3] Aghazadeh Fatemeh, Tahan Antoine, and Thomas Marc. 2018. Tool condition monitoring using spectral subtraction and convolutional neural networks in milling process. Int. J. Adv. Manuf. Technol. 98, 9–12 (October 2018), 32173227. http://10.0.3.239/s00170-018-2420-0Google ScholarGoogle ScholarCross RefCross Ref
  4. [4] Aherwar A.. 2012. An investigation on gearbox fault detection using vibration analysis techniques: A review. Aust. J. Mech. Eng. 10, 2 (December 2012), 169183. http://10.0.27.246/M11-830.2012.10.2Google ScholarGoogle ScholarCross RefCross Ref
  5. [5] Alfeo Antonio L., Cimino Mario G. C. A., and Vaglini Gigliola. 2022. Degradation stage classification via interpretable feature learning. J. Manuf. Syst. 62, (February 2022), 972983. Google ScholarGoogle ScholarCross RefCross Ref
  6. [6] Alla Sridhar and Adari Suman Kalyan. 2021. What is MLOps? BT - Beginning MLOps with MLFlow: Deploy Models in AWS SageMaker, Google Cloud, and Microsoft Azure. In Sridhar Alla and Suman Kalyan Adari (Eds.). Apress, Berkeley, CA, 79124. Google ScholarGoogle ScholarCross RefCross Ref
  7. [7] Alpaydin Ethem. 2010. Introduction to Machine Learning (2nd ed.). MIT Press, Cambridge. Google ScholarGoogle ScholarCross RefCross Ref
  8. [8] Alshorman Omar, Irfan Muhammad, Saad Nordin, Zhen D., Haider Noman, Glowacz Adam, and Alshorman Ahmad. 2020. A review of artificial intelligence methods for condition monitoring and fault diagnosis of rolling element bearings for induction motor. Shock Vib. 2020, Cm (2020). Google ScholarGoogle ScholarCross RefCross Ref
  9. [9] Stuani Alves Diogo, Bregion Daniel Gregory, Fiori de Castro Helio, Henrique Machado Tiago, Lucchesi Cavalca Katia, Gecgel Ozhan, Paulo Dias João, and Ekwaro-Osire Stephen. 2020. Uncertainty quantification in deep convolutional neural network diagnostics of journal bearings with ovalization fault. Mech. Mach. Theory 149, (2020). Google ScholarGoogle ScholarCross RefCross Ref
  10. [10] Amirat Y., Benbouzid M. E. H., Al-Ahmar E., Bensaker B., and Turri S.. 2009. A brief status on condition monitoring and fault diagnosis in wind energy conversion systems. Renew. Sustain. Energy Rev. 13, 9 (2009), 26292636. Google ScholarGoogle ScholarCross RefCross Ref
  11. [11] Ansari Fazel, Glawar Robert, and Nemeth Tanja. 2019. PriMa: A prescriptive maintenance model for cyber-physical production systems. Int. J. Comput. Integr. Manuf. 32, 4–5 (2019), 482503. Google ScholarGoogle ScholarCross RefCross Ref
  12. [12] Aremu Oluseun Omotola, Cody Roya Allison, Hyland-Wood David, and McAree Peter Ross. 2020. A relative entropy based feature selection framework for asset data in predictive maintenance. Comput. Ind. Eng. 145 (2020), 106536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. [13] Awadallah Mohamed A. and Morcos Medhat M.. 2003. Application of AI tools in fault diagnosis of electrical machines and drives—An overview. IEEE Trans. Energy Convers. 18, 2 (2003), 245. http://10.0.4.85/TEC.2003.811739Google ScholarGoogle ScholarCross RefCross Ref
  14. [14] Aydın İlhan, Karaköse Mehmet, and Akın Erhan. 2015. Combined intelligent methods based on wireless sensor networks for condition monitoring and fault diagnosis. J. Intell. Manuf. 26, 4 (August 2015), 717729. http://10.0.3.239/s10845-013-0829-8Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. [15] Ayvaz Serkan and Alpay Koray. 2021. Predictive maintenance system for production lines in manufacturing: A machine learning approach using IoT data in real-time. Expert Syst. Appl. 173, (January 2021), 114598. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. [16] Balachandar K. and Jegadeeshwaran R.. 2021. Friction stir welding tool condition monitoring using vibration signals and random forest algorithm - A machine learning approach. Mater. Today Proc. 46, (2021), 11741180. Google ScholarGoogle ScholarCross RefCross Ref
  17. [17] Balazinski Marek, Czogala Ernest, Jemielniak Krzysztof, and Leski Jacek. 2002. Tool condition monitoring using artificial intelligence methods. Eng. Appl. Artif. Intell. 15, 1 (February 2002), 73. http://10.0.3.248/S0952-1976(02)00004-0Google ScholarGoogle ScholarCross RefCross Ref
  18. [18] Bampoula Xanthi, Siaterlis Georgios, Nikolakis Nikolaos, and Alexopoulos Kosmas. 2021. A deep learning model for predictive maintenance in cyber-physical production systems using LSTM autoencoders. Sensors (Switzerland) 21, 3 (2021), 114. Google ScholarGoogle ScholarCross RefCross Ref
  19. [19] Bansal Maggi, Chana Inderveer, and Clarke Siobhán. 2020. A survey on IoT big data: Current status, 13 V's challenges, and future directions. ACM Comput. Surv. 53, 6 (2020). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. [20] Behera Sourajit and Misra Rajiv. 2021. Generative adversarial networks based remaining useful life estimation for IIoT. Comput. Electr. Eng. 92, June (2021), 107195. Google ScholarGoogle ScholarCross RefCross Ref
  21. [21] Binsaeid Sultan, Asfour Shihab, Cho Sohyung, and Onar Arzu. 2009. Machine ensemble approach for simultaneous detection of transient and gradual abnormalities in end milling using multisensor fusion. J. Mater. Process. Technol. 209, 10 (2009), 47284738. Google ScholarGoogle ScholarCross RefCross Ref
  22. [22] Bokrantz Jon, Skoogh Anders, Berlin Cecilia, Wuest Thorsten, and Stahre Johan. 2020. Smart maintenance: An empirically grounded conceptualization. Int. J. Prod. Econ. 223, August 2019 (2020), 107534. Google ScholarGoogle ScholarCross RefCross Ref
  23. [23] Booyse Wihan, Wilke Daniel N., and Heyns Stephan. 2020. Deep digital twins for detection, diagnostics and prognostics. Mech. Syst. Signal Process. 140, (2020), 106612. Google ScholarGoogle ScholarCross RefCross Ref
  24. [24] Bousdekis Alexandros, Lepenioti Katerina, Apostolou Dimitris, and Mentzas Gregoris. 2019. Decision making in predictive maintenance: Literature review and research agenda for industry 4.0. IFAC-PapersOnLine 52, 13 (2019), 607612. Google ScholarGoogle ScholarCross RefCross Ref
  25. [25] Brophy B., Kelly K., and Byrne G.. 2002. AI-based condition monitoring of the drilling process. J. Mater. Process. Technol. 124, 3 (June 2002), 305. http://10.0.3.248/S0924-0136(02)00201-7Google ScholarGoogle ScholarCross RefCross Ref
  26. [26] Vegard Buer Sven, Strandhagen Jan Ola, and Chan Felix T. S.. 2018. The link between industry 4.0 and lean manufacturing: Mapping current research and establishing a research agenda. Int. J. Prod. Res. 56, 8 (2018), 29242940. Google ScholarGoogle ScholarCross RefCross Ref
  27. [27] Bukhsh Zaharah. 2022. Contrastive sensor transformer for predictive maintenance of industrial assets. ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc. 2022-May, (2022), 35583562. Google ScholarGoogle ScholarCross RefCross Ref
  28. [28] Caggiano Alessandra, Rimpault Xavier, Teti Roberto, Balazinski Marek, François Chatelain Jean, and Nele Luigi. 2018. Machine learning approach based on fractal analysis for optimal tool life exploitation in CFRP composite drilling for aeronautical assembly. CIRP Ann. 67, 1 (2018), 483486. Google ScholarGoogle ScholarCross RefCross Ref
  29. [29] Cakir Mustafa, Guvenc Mehmet Ali, and Mistikoglu Selcuk. 2020. The experimental application of popular machine learning algorithms on predictive maintenance and the design of IIoT based condition monitoring system. Comput. Ind. Eng. 151, (2020), 106948. Google ScholarGoogle ScholarCross RefCross Ref
  30. [30] Carvalho Thyago P., Soares Fabrízzio A. A. M. N., Vita Roberto, da P. Francisco Roberto, Basto João P., and Alcalá Symone G. S.. 2019. A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 137, (November 2019). http://10.0.3.248/j.cie.2019.106024Google ScholarGoogle ScholarCross RefCross Ref
  31. [31] Chung Chang Chih and Jen Lin Chih. 2011. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 3 (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. [32] Choudhary Anurag, Mian Tauheed, and Fatima Shahab. 2021. Convolutional neural network based bearing fault diagnosis of rotating machine using thermal images. Meas. J. Int. Meas. Confed. 176, (January 2021), 109196. Google ScholarGoogle ScholarCross RefCross Ref
  33. [33] Chuang Shang-Yi, Sahoo Nilima, Lin Hung-Wei, and Chang Yeong-Hwa. 2019. Predictive maintenance with sensor data analytics on a Raspberry Pi-based experimental platform. Sensors. http://10.0.13.62/s19183884Google ScholarGoogle ScholarCross RefCross Ref
  34. [34] Murat Çinar Zeki, Abdussalam Nuhu Abubakar, Zeeshan Qasim, Korhan Orhan, Asmael Mohammed, and Safaei Babak. 2020. Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustain. 12, 19 (2020). Google ScholarGoogle ScholarCross RefCross Ref
  35. [35] Corne Raphael, Nath Chandra, El Mansori Mohamed, and Kurfess Thomas. 2017. Study of spindle power data with neural network for predicting real-time tool wear/breakage during inconel drilling. J. Manuf. Syst. 43, (2017), 287295. Google ScholarGoogle ScholarCross RefCross Ref
  36. [36] Cubillo Adrian, Vermeulen Jeroen, Rodriguez de la Peña Marcos, Collantes Casanova Ignacio, and Perinpanayagam Suresh. 2017. Physics-based integrated vehicle health management system for predicting the remaining useful life of an aircraft planetary gear transmission. Int. J. Struct. Integr. 8, 4 (2017), 484495. Google ScholarGoogle ScholarCross RefCross Ref
  37. [37] Dalzochio Jovani, Kunst Rafael, Pignaton Edison, Binotto Alecio, Sanyal Srijnan, Favilla Jose, and Barbosa Jorge. 2020. Machine learning and reasoning for predictive maintenance in industry 4.0: Current status and challenges. Comput. Ind. 123, (2020), 103298. Google ScholarGoogle ScholarCross RefCross Ref
  38. [38] Das Monidipa, Pratama Mahardhika, and Tjahjowidodo Tegoeh. 2020. A self-evolving mutually-operative recurrent network-based model for online tool condition monitoring in delay scenario. Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. (2020), 27752783. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. [39] Davis Jim, Edgar Thomas, Porter James, Bernaden John, and Sarli Michael. 2012. Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Comput. Chem. Eng. 47, (2012), 145156. Google ScholarGoogle ScholarCross RefCross Ref
  40. [40] Ding Ning, Li Hulin, Yin Zhongwei, Zhong Ning, and Zhang Le. 2020. Journal bearing seizure degradation assessment and remaining useful life prediction based on long short-term memory neural network. Meas. J. Int. Meas. Confed. 166, (2020), Google ScholarGoogle ScholarCross RefCross Ref
  41. [41] Domínguez-Monferrer C., Fernández-Pérez J., De Santos R., Miguélez M. H., and Cantero J. L.. 2022. Machine learning approach in non-intrusive monitoring of tool wear evolution in massive CFRP automatic drilling processes in the aircraft industry. J. Manuf. Syst. 65, (2022).Google ScholarGoogle ScholarCross RefCross Ref
  42. [42] Dragomir Otilia Elena, Gouriveau Rafael, Dragomir Florin, Minca Eugenia, and Zerhouni Noureddine. 2009. Review of prognostic problem in condition-based maintenance. 2009 Eur. Control Conf. (2009), 15871592. Google ScholarGoogle ScholarCross RefCross Ref
  43. [43] Drakaki Maria, Karnavas Yannis L., Tziafettas Ioannis A., Linardos Vasilis, and Tzionas Panagiotis. 2022. Machine learning and deep learning based methods toward industry 4.0 predictive maintenance in induction motors: Α state of the art survey. J. Ind. Eng. Manag. 15, 1 (2022), 3157. Google ScholarGoogle ScholarCross RefCross Ref
  44. [44] Du R.. 1999. Signal understanding and tool condition monitoring. Eng. Appl. Artif. Intell. 12, 5 (1999), 585597. Google ScholarGoogle ScholarCross RefCross Ref
  45. [45] Dyck Andrej, Penners Ralf, and Lichter Horst. 2015. Towards definitions for release engineering and DevOps. Proc. - 3rd Int. Work. Release Eng. RELENG 2015 (2015), 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. [46] Elangovan M., Babu Devasenapati S., Sakthivel N. R., and Ramachandran K. I.. 2011. Evaluation of expert system for condition monitoring of a single point cutting tool using principle component analysis and decision tree algorithm. Expert Syst. Appl. 38, 4 (2011), 44504459. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. [47] Elasha Faris, Shanbr Suliman, Li Xiaochuan, and Mba David. 2019. Prognosis of a wind turbine gearbox bearing using supervised machine learning. Sensors (14248220) 19, 14 (July 2019), 3092. http://10.0.13.62/s19143092Google ScholarGoogle Scholar
  48. [48] Elforjani Mohamed and Shanbr Suliman. 2018. Prognosis of bearing acoustic emission signals using supervised machine learning. IEEE Trans. Ind. Electron. 65, 7 (July 2018), 58645871. http://10.0.4.85/TIE.2017.2767551Google ScholarGoogle ScholarCross RefCross Ref
  49. [49] Erbe H., Morel G., Lee J., Iung B., Léger J. B., Seliger G., Hohwieler E., Kiritsis D., Hecht M., and Berger U.. 2005. Infotronic technologies for e-maintenance regarding the cost aspects. IFAC. Google ScholarGoogle ScholarCross RefCross Ref
  50. [50] Feng Qi and George Shanthikumar J.. 2018. How research in production and operations management may evolve in the era of big data. Prod. Oper. Manag. 27, 9 (2018), 16701684. Google ScholarGoogle ScholarCross RefCross Ref
  51. [51] Ferreira Carlos and Gonçalves Gil. 2022. Remaining useful life prediction and challenges: A literature review on the use of machine learning methods. J. Manuf. Syst. 63, (March 2022), 550562. Google ScholarGoogle ScholarCross RefCross Ref
  52. [52] Ferreira Luís, Pilastri André, Romano Filipe, and Cortez Paulo. 2022. Using supervised and one-class automated machine learning for predictive maintenance. Appl. Soft Comput. 131, (November 2022). Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. [53] Ferreira Luís, Pilastri André, Sousa Vítor, Romano Filipe, and Cortez Paulo. 2021. Prediction of Maintenance Equipment Failures Using Automated Machine Learning BT - Intelligent Data Engineering and Automated Learning – IDEAL 2021. Springer International Publishing, Cham, 259267.Google ScholarGoogle Scholar
  54. [54] Feurer Matthias. 2015. Efficient and Robust Automated Machine Learning. (2015). Retrieved from https://papers.neurips.cc/paper/2015/hash/11d0e6287202fced83f79975ec59a3a6-Abstract.htmlGoogle ScholarGoogle Scholar
  55. [55] Feurer Matthias and Hutter Frank. 2019. Hyperparameter optimization. In Automated Machine Learning: Methods, Systems, Challenges, Challenges. Springer, Cham, 333. Google ScholarGoogle ScholarCross RefCross Ref
  56. [56] Fink Arlene. 2020. Conducting Research Literature Reviews: From the Internet to Paper (5th ed.). Sage Publications, Los Angeles, CA.Google ScholarGoogle Scholar
  57. [57] Fink Olga, Wang Qin, Svensén Markus, Dersin Pierre, Lee Wan Jui, and Ducoffe Melanie. 2020. Potential, challenges and future directions for deep learning in prognostics and health management applications. Eng. Appl. Artif. Intell. 92, (May 2020), 103678. Google ScholarGoogle ScholarCross RefCross Ref
  58. [58] Gangsar Purushottam and Tiwari Rajiv. 2020. Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: A state-of-the-art review. Mech. Syst. Signal Process. 144, (2020), 106908. Google ScholarGoogle ScholarCross RefCross Ref
  59. [59] Gao Yun, Liu Xiaoyang, Huang Haizhou, and Xiang Jiawei. 2021. A hybrid of FEM simulations and generative adversarial networks to classify faults in rotor-bearing systems. ISA Trans. 108, (2021), 356366. Google ScholarGoogle ScholarCross RefCross Ref
  60. [60] Garg A., Vijayaraghavan V., Tai K., Singru Pravin M., Jain Vishal, and Krishnakumar Nikilesh. 2015. Model development based on evolutionary framework for condition monitoring of a lathe machine. Meas. J. Int. Meas. Confed. 73, (2015), 95110. Google ScholarGoogle ScholarCross RefCross Ref
  61. [61] Garouani Moncef, Ahmad Adeel, Bouneffa Mourad, Hamlich Mohamed, Bourguin Gregory, and Lewandowski Arnaud. 2022. Towards big industrial data mining through explainable automated machine learning. Int. J. Adv. Manuf. Technol. 120, 1–2 (2022), 11691188. Google ScholarGoogle ScholarCross RefCross Ref
  62. [62] González-Muñiz Ana, Díaz Ignacio, and Cuadrado Abel A.. 2020. DCNN for condition monitoring and fault detection in rotating machines and its contribution to the understanding of machine nature. Heliyon 6, 2 (2020), e03395. Google ScholarGoogle ScholarCross RefCross Ref
  63. [63] Haarman Mark, de Klerk Pieter, Decaigny Peter, Mulders Michel, Vassiliadis Costas, Sijtsema Hedwich, and Gallo Ivan. 2018. Beyond the hype: PdM 4.0 delivers results. Predict. Maint. 4.0 (September 2018). https://www.pwc.de/de/industrielle-produktion/pwc-predictive-maintenance-4-0.pdfGoogle ScholarGoogle Scholar
  64. [64] Hajgató Gergely, Wéber Richard, Szilágyi Botond, Tóthpal Balázs, Gyires-Tóth Bálint, and Hős Csaba. 2022. PredMaX: Predictive maintenance with explainable deep convolutional autoencoders. Adv. Eng. Informatics 54, (2022). Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. [65] Hapke Hannes and Nelson Catherine. 2020. Building Machine Learning Pipelines. O'Reilly Media.Google ScholarGoogle Scholar
  66. [66] He Zhaopeng, Shi Tielin, Xuan Jianping, and Li Tianxiang. 2021. Research on tool wear prediction based on temperature signals and deep learning. Wear 478–479 (2021), 203902. Google ScholarGoogle ScholarCross RefCross Ref
  67. [67] Helbing Georg and Ritter Matthias. 2018. Deep learning for fault detection in wind turbines. Renew. Sustain. Energy Rev. 98, (December 2018), 189198. http://10.0.3.248/j.rser.2018.09.012Google ScholarGoogle ScholarCross RefCross Ref
  68. [68] Hendrickx Kilian, Meert Wannes, Mollet Yves, Gyselinck Johan, Cornelis Bram, Gryllias Konstantinos, and Davis Jesse. 2020. A general anomaly detection framework for fleet-based condition monitoring of machines. Mech. Syst. Signal Process. 139, (May 2020). http://10.0.3.248/j.ymssp.2019.106585Google ScholarGoogle ScholarCross RefCross Ref
  69. [69] van Hoek Remko. 2019. Exploring blockchain implementation in the supply chain: Learning from pioneers and RFID research. Int. J. Oper. Prod. Manag. 39, 6 (2019), 829859. Google ScholarGoogle ScholarCross RefCross Ref
  70. [70] Hu Qinhua, Ohata Elene F., Silva Francisco H. S., Ramalho Geraldo L. B., Han Tao, and Rebouças Filho Pedro P.. 2020. A new online approach for classification of pumps vibration patterns based on intelligent IoT system. Meas. J. Int. Meas. Confed. 151, (2020), 107138. Google ScholarGoogle ScholarCross RefCross Ref
  71. [71] Huang Min, Liu Zhen, and Tao Yang. 2020. Mechanical fault diagnosis and prediction in IoT based on multi-source sensing data fusion. Simul. Model. Pract. Theory 102. Google ScholarGoogle ScholarCross RefCross Ref
  72. [72] Jablon Leonardo S., Avila Sergio L., Borba Bruno, Mourão Gustavo L., Freitas Fabrizio L., and Penz Cesar A.. 2021. Diagnosis of rotating machine unbalance using machine learning algorithms on vibration orbital features. JVC/Journal Vib. Control 27, 3–4 (2021), 468476. Google ScholarGoogle ScholarCross RefCross Ref
  73. [73] Jamil Mohd Atif, Khan Md. Asif Ali, and Khanam Sidra. 2021. Feature-based performance of SVM and KNN classifiers for diagnosis of rolling element bearing faults. Vibroengineering Procedia 39, (2021), 3642. Google ScholarGoogle ScholarCross RefCross Ref
  74. [74] Janssens Olivier, Schulz Raiko, Slavkovikj Viktor, Stockman Kurt, Loccufier Mia, Van de Walle Rik, and Van Hoecke Sofie. 2015. Thermal image based fault diagnosis for rotating machinery. Infrared Phys. Technol. 73, (2015), 7887. Google ScholarGoogle ScholarCross RefCross Ref
  75. [75] Janssens Olivier, Slavkovikj Viktor, Vervisch Bram, Stockman Kurt, Loccufier Mia, Verstockt Steven, Van de Walle Rik, and Van Hoecke Sofie. 2016. Convolutional neural network based fault detection for rotating machinery. J. Sound Vib. 377, (2016), 331345. Google ScholarGoogle ScholarCross RefCross Ref
  76. [76] Jardine Andrew K. S., Lin Daming, and Banjevic Dragan. 2005. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20, 7 (2005), 14831510. Google ScholarGoogle ScholarCross RefCross Ref
  77. [77] Jayaswal Pratesh, Verma S. N., and Wadhwani A. K.. 2010. Application of ANN, fuzzy logic and wavelet transform in machine fault diagnosis using vibration signal analysis. J. Qual. Maint. Eng. 16, 2 (2010), 190213. Google ScholarGoogle ScholarCross RefCross Ref
  78. [78] Jia Xiaodong, Zhao Ming, Di Yuan, Li Pin, and Lee Jay. 2018. Sparse filtering with the generalized lp/lq norm and its applications to the condition monitoring of rotating machinery. Mech. Syst. Signal Process. 102, (March 2018), 198213. http://10.0.3.248/j.ymssp.2017.09.018Google ScholarGoogle ScholarCross RefCross Ref
  79. [79] Kache Florian and Seuring Stefan. 2017. Challenges and opportunities of digital information at the intersection of big data analytics and supply chain management. Int. J. Oper. Prod. Manag. 37, 1 (2017), 1036. Google ScholarGoogle ScholarCross RefCross Ref
  80. [80] Kateris Dimitrios, Moshou Dimitrios, Pantazi Xanthoula-Eirini, Gravalos Ioannis, Sawalhi Nader, and Loutridis Spiros. 2014. A machine learning approach for the condition monitoring of rotating machinery. J. Mech. Sci. Technol. 28, 1 (January 2014), 6171. http://10.0.3.239/s12206-013-1102-yGoogle ScholarGoogle ScholarCross RefCross Ref
  81. [81] Kuria Kimotho James, Hemsel Tobias, and Sextro Walter. 2017. Estimation of remaining useful lifetime of piezoelectric transducers based on self-sensing. IEEE Trans. Reliab. 66, 3 (September 2017), 914923. http://10.0.4.85/TR.2017.2710260Google ScholarGoogle ScholarCross RefCross Ref
  82. [82] König Caroline and Helmi Ahmed Mohamed. 2020. Sensitivity analysis of sensors in a hydraulic condition monitoring system using CNN models. Sensors (Switzerland) 20, 11 (2020), 119. Google ScholarGoogle ScholarCross RefCross Ref
  83. [83] König F., Marheineke J., Jacobs G., Sous C., Zuo Ming J., and Tian Zhigang. 2021. Data-driven wear monitoring for sliding bearings using acoustic emission signals and long short-term memory neural networks. Wear 476, (January 2021), 203616. Google ScholarGoogle ScholarCross RefCross Ref
  84. [84] Kothuru Achyuth, Nooka Sai Prasad, and Liu Rui. 2018. Application of audible sound signals for tool wear monitoring using machine learning techniques in end milling. Int. J. Adv. Manuf. Technol. 95, 9–12 (April 2018), 37973808. http://10.0.3.239/s00170-017-1460-1Google ScholarGoogle ScholarCross RefCross Ref
  85. [85] Kreuzberger Dominik, Kühl Niklas, and Hirschl Sebastian. 2022. Machine Learning Operations (MLOps): Overview, Definition, and Architecture. (2022). http://arxiv.org/abs/2205.02302Google ScholarGoogle Scholar
  86. [86] Krishnakumar Nikilesh, Jain Vishal, and Singru Pravin M.. 2015. Development of predictive model for vibro-acoustic condition monitoring of lathe. J. Vibroengineering 17, 1 (2015), 229242. http://search.ebscohost.com/login.aspx?direct=true&db=afh&AN=101028285&site=ehost-liveGoogle ScholarGoogle Scholar
  87. [87] Kumar Anil, Gandhi C. P., Zhou Yuqing, Kumar Rajesh, and Xiang Jiawei. 2020. Latest developments in gear defect diagnosis and prognosis: A review. Meas. J. Int. Meas. Confed. 158, (2020), 107735. Google ScholarGoogle ScholarCross RefCross Ref
  88. [88] Kumar Manoj, Shankar Mukherjee Parboti, and Misra Nirendra Mohan. 2013. Advancement and current status of wear debris analysis for machine condition monitoring: A review. Ind. Lubr. Tribol. 65, 1 (2013), 311. http://10.0.4.84/00368791311292756Google ScholarGoogle ScholarCross RefCross Ref
  89. [89] Kutucuoglu K. Y., Hamali J., Irani Z., and Sharp J. M.. 2001. A framework for managing maintenance using performance measurement systems. Int. J. Oper. Prod. Manag. 21, 1–2 (2001), 173194. Google ScholarGoogle ScholarCross RefCross Ref
  90. [90] Langone Rocco, Alzate Carlos, Ketelaere Bart De, Vlasselaer Jonas, Meert Wannes, and Suykens Johan A. K.. 2015. LS-SVM based spectral clustering and regression for predicting maintenance of industrial machines. Eng. Appl. Artif. Intell. 37, (2015), 268278. Google ScholarGoogle ScholarCross RefCross Ref
  91. [91] Lee Jay, Ni Jun, Djurdjanovic Dragan, Qiu Hai, and Liao Haitao. 2006. Intelligent prognostics tools and e-maintenance. Comput. Ind. 57, (2006), 476489. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. [92] Jae Lee Wo, Xia Kevin, Denton Nancy L., Ribeiro Bruno, and Sutherland John W.. 2021. Development of a speed invariant deep learning model with application to condition monitoring of rotating machinery. J. Intell. Manuf. 32, 2 (2021), 393406. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. [93] Lei Yaguo, Li Naipeng, Guo Liang, Li Ningbo, Yan Tao, and Lin Jing. 2018. Machinery health prognostics: A systematic review from data acquisition to RUL prediction. Mech. Syst. Signal Process. 104, (2018), 799834. Google ScholarGoogle ScholarCross RefCross Ref
  94. [94] Lewandowski M. and Scholz-Reiter B.. 2013. Condition-based maintenance systems: Application at a German sea port. Int. J. Ind. Eng. 20, 1–2 (2013), 211.Google ScholarGoogle Scholar
  95. [95] Lin Tianjiao, Wang Huaqing, Guo Xudong, Wang Pengxin, and Song Liuyang. 2022. A novel prediction network for remaining useful life of rotating machinery. Int. J. Adv. Manuf. Technol. (2022). Google ScholarGoogle ScholarCross RefCross Ref
  96. [96] Liu Changfu and Zhu Lida. 2020. A two-stage approach for predicting the remaining useful life of tools using bidirectional long short-term memory. Meas. J. Int. Meas. Confed. 164, (January 2020), 108029. Google ScholarGoogle ScholarCross RefCross Ref
  97. [97] Liu Chenyu and Gryllias Konstantinos. 2020. A semi-supervised support vector data description-based fault detection method for rolling element bearings based on cyclic spectral analysis. Mech. Syst. Signal Process. 140, (June 2020). http://10.0.3.248/j.ymssp.2020.106682Google ScholarGoogle ScholarCross RefCross Ref
  98. [98] Lohmer Jacob and Lasch Rainer. 2020. Production planning and scheduling in multi-factory production networks: A systematic literature review. Int. J. Prod. Res. (2020), 127. Google ScholarGoogle ScholarCross RefCross Ref
  99. [99] Madhusudana C. K., Kumar Hemantha, and Narendranath S.. 2016. Condition monitoring of face milling tool using K-star algorithm and histogram features of vibration signal. Eng. Sci. Technol. an Int. J. 19, 3 (2016), 15431551. Google ScholarGoogle ScholarCross RefCross Ref
  100. [100] Mao Wentao, He Jianliang, and Zuo Ming J.. 2020. Predicting remaining useful life of rolling bearings based on deep feature representation and transfer learning. IEEE Trans. Instrum. Meas. 69, 4 (2020), 15941608. Google ScholarGoogle ScholarCross RefCross Ref
  101. [101] Matsui Beatriz M. A. and Goya Denise H.. 2022. MLOps: A guide to its adoption in the context of responsible AI. Proc. - Work. Softw. Eng. Responsible AI, SE4RAI 2022 (2022), 4549. Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. [102] Maurya Seetaram, Singh Vikas, Verma Nishchal K., and Mechefske Chris K.. 2021. Condition-based monitoring in variable machine running conditions using low-level knowledge transfer with DNN. IEEE Trans. Autom. Sci. Eng. 18, 4 (2021), 19831997. Google ScholarGoogle ScholarCross RefCross Ref
  103. [103] Mendling Jan, Weber Ingo, van der Aalst Wil, vom Brocke Jan, Cabanillas Cristina, Daniel Florian, Debois Soren, Di Ciccio Claudio, Dumas Marlon, Dustdar Schahram, Gal Avigdor, Garcia-Bañuelos Luciano, Governatori Guido, Hull Richard, La Rosa Marcello, Leopold Henrik, Leymann Frank, Recker Jan, Reichert Manfred, Reijers Hajo A., Rinderle-Ma Stefanie, Rogge-Solti Andreas, Rosemann Michael, Schulte Stefan, Singh Munindar P., Slaats Tijs, Staples Mark, Weber Barbara, Weidlich Matthias, Weske Mathias, Xu Xiwei, and Zhu Liming. 2018. Blockchains for business process management - Challenges and opportunities. ACM Trans. Manag. Inf. Syst. 9, 1 (February 2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. [104] Miller Dennis. 2018. Blockchain and the internet of things in the industrial sector. IT Prof. 20, 3 (2018), 1518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. [105] Mohanraj T., Yerchuru Jayanthi, Krishnan H., Nithin Aravind R. S., and Yameni R.. 2021. Development of tool condition monitoring system in end milling process using wavelet features and Hoelder's exponent with machine learning algorithms. Meas. J. Int. Meas. Confed. 173, (2021), 108671. Google ScholarGoogle ScholarCross RefCross Ref
  106. [106] Moosavian Ashkan, Ahmadi Hojat, Sakhaei Babak, and Labbafi Reza. 2014. Support vector machine and K-nearest neighbour for unbalanced fault detection. J. Qual. Maint. Eng. 20, 1 (2014), 6575. Google ScholarGoogle ScholarCross RefCross Ref
  107. [107] Moshrefzadeh Ali. 2021. Condition monitoring and intelligent diagnosis of rolling element bearings under constant/variable load and speed conditions. Mech. Syst. Signal Process. 149, Cm (2021), 136. Google ScholarGoogle ScholarCross RefCross Ref
  108. [108] Muchiri Peter N., Pintelon Liliane, Martin Harry, and De Meyer Anne-Marie. 2010. Empirical analysis of maintenance performance measurement in Belgian industries. Int. J. Prod. Res. 48, 20 (2010), 59055924. Google ScholarGoogle ScholarCross RefCross Ref
  109. [109] Nayana B. R. and Geethanjali P.. 2020. Induction motor bearing faults. IEEE Trans. Instrum. Meas. 69, 5 (2020), 19081919. Google ScholarGoogle ScholarCross RefCross Ref
  110. [110] Nemeth Tanja, Ansari Fazel, Sihn Wilfried, Haslhofer Bernhard, and Schindler Alexander. 2018. PriMa-X: A reference model for realizing prescriptive maintenance and assessing its maturity enhanced by machine learning. Procedia CIRP 72, (2018), 10391044. Google ScholarGoogle ScholarCross RefCross Ref
  111. [111] Ntalampiras Stavros. 2021. One-shot learning for acoustic diagnosis of industrial machines. Expert Syst. Appl. 178, (March 2021), 114984. Google ScholarGoogle ScholarCross RefCross Ref
  112. [112] Painuli Sanidhya, Elangovan M., and Sugumaran V.. 2014. Tool condition monitoring using K-star algorithm. Expert Syst. Appl. 41, 6 (2014), 26382643. Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. [113] Kumar Panda Asish, Shruti Rapur Janani, and Tiwari Rajiv. 2018. Prediction of flow blockages and impending cavitation in centrifugal pumps using Support Vector Machine (SVM) algorithms based on vibration measurements. Meas. 130, (December 2018), 4456. http://10.0.3.248/j.measurement.2018.07.092Google ScholarGoogle ScholarCross RefCross Ref
  114. [114] Paraschos Spyridon, Mollas Ioannis, Bassiliades Nick, and Tsoumakas Grigorios. 2021. VisioRed: A visualisation tool for interpretable predictive maintenance. IJCAI Int. Jt. Conf. Artif. Intell. (2021), 50045007. Google ScholarGoogle ScholarCross RefCross Ref
  115. [115] Pecht Michael G.. 2018. Prognostics and Health Management of Electronics: Fundamentals, Machine Learning, and the Internet of Things (2nd ed.). John Wiley and Sons Ltd, Hoboken, NJ. Google ScholarGoogle ScholarCross RefCross Ref
  116. [116] Pillai Shanmugasivam and Vadakkepat Prahlad. 2021. Deep learning for machine health prognostics using Kernel-based feature transformation. J. Intell. Manuf. Ml (2021). Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. [117] Pouyanfar Samira, Sadiq Saad, Yan Yilin, Tian Haiman, Tao Yudong, Reyes Maria Presa, Shyu Mei-Ling, Chen Shu-Ching, and Iyengar S. S.. 2018. A survey on deep learning: Algorithms, techniques, and applications. ACM Comput. Surv. 51, 5 (September 2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. [118] Prajapati Ashok, Bechtel James, and Ganesan Subramaniam. 2012. Condition based maintenance: A survey. J. Qual. Maint. Eng. 18, 4 (2012), 384400. Google ScholarGoogle ScholarCross RefCross Ref
  119. [119] Pratama Mahardhika, Dimla Eric, Lai Chow Yin, and Lughofer Edwin. 2019. Metacognitive learning approach for online tool condition monitoring. J. Intell. Manuf. 30, 4 (2019), 17171737. http://10.0.3.239/s10845-017-1348-9Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. [120] Pushak Yasha and Hoos Holger. 2022. AutoML loss landscapes. ACM Trans. Evol. Learn. Optim. 2, 3 (2022), 130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. [121] Rai Akhand and Upadhyay S. H.. 2016. A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings. Tribol. Int. 96, (2016), 289306. Google ScholarGoogle ScholarCross RefCross Ref
  122. [122] Rashid Tariq. 2016. Make Your Own Neural Network. CreateSpace Independent Publishing Platform.Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. [123] Rosati Riccardo, Romeo Luca, Cecchini Gianalberto, Tonetto Flavio, Viti Paolo, Mancini Adriano, and Frontoni Emanuele. 2023. From knowledge-based to big data analytic model: A novel IoT and machine learning based decision support system for predictive maintenance in Industry 4.0. J. Intell. Manuf. 34, 1 (2023), 107121. Google ScholarGoogle ScholarDigital LibraryDigital Library
  124. [124] Roy R., Stark R., Tracht K., Takata S., and Mori M.. 2016. Continuous maintenance and the future – Foundations and technological challenges. CIRP Ann. - Manuf. Technol. 65, 2 (2016), 667688. Google ScholarGoogle ScholarCross RefCross Ref
  125. [125] Ruiz-Sarmiento Jose Raul, Monroy Javier, Moreno Francisco Angel, Galindo Cipriano, Bonelo Jose Maria, and Gonzalez-Jimenez Javier. 2020. A predictive model for the maintenance of industrial machinery in the context of industry 4.0. Eng. Appl. Artif. Intell. 87 (2020), 103289. Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. [126] Sakthivel N. R., Sugumaran V., and Nair Binoy B.. 2010. Comparison of decision tree-fuzzy and rough set-fuzzy methods for fault categorization of mono-block centrifugal pump. Mech. Syst. Signal Process. 24, 6 (August 2010), 18871906. http://10.0.3.248/j.ymssp.2010.01.008Google ScholarGoogle ScholarCross RefCross Ref
  127. [127] Sardá-Espinosa Alexis, Subbiah Subanatarajan, and Bartz-Beielstein Thomas. 2017. Conditional inference trees for knowledge extraction from motor health condition data. Eng. Appl. Artif. Intell. 62, (June 2017), 2637. http://10.0.3.248/j.engappai.2017.03.008Google ScholarGoogle ScholarDigital LibraryDigital Library
  128. [128] Sarker Iqbal H.. 2021. Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput. Sci. 2, 6 (2021), 120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  129. [129] Saxena Abhinav, Sankararaman Shankar, and Goebel Kai. 2014. Performance evaluation for fleet-based and unit-based prognostic methods. Second Eur. Conf. Progn. Heal. Manag. Soc. (2014), 112.Google ScholarGoogle Scholar
  130. [130] Schenkelberg Kai, Seidenberg Ulrich, and Ansari Fazel. 2020. Supervised machine learning for knowledge-based analysis of maintenance impact on profitability. IFAC-PapersOnLine 53, Ml (2020), 1065110657. Google ScholarGoogle ScholarCross RefCross Ref
  131. [131] Schmitt Ricarda Regina, Decressin Robert, Dietrich Franz, and Dröder Klaus. 2018. Detection of wear parameters using existing sensors in the machines environment to reach higher machine precision. J. Mach. Eng. 18, 2 (2018), 8596. Google ScholarGoogle ScholarCross RefCross Ref
  132. [132] Schwendemann Sebastian, Amjad Zubair, and Sikora Axel. 2021. A survey of machine-learning techniques for condition monitoring and predictive maintenance of bearings in grinding machines. Comput. Ind. 125, (2021), 103380. Google ScholarGoogle ScholarCross RefCross Ref
  133. [133] Serin G., Sener B., Ozbayoglu A. M., and Unver H. O.. 2020. Review of tool condition monitoring in machining and opportunities for deep learning. Int. J. Adv. Manuf. Technol. 109, 3–4 (2020), 953974. Google ScholarGoogle ScholarCross RefCross Ref
  134. [134] Serradilla Oscar, Zugasti Ekhi, Ramirez de Okariz Julian, Rodriguez Jon, and Zurutuza Urko. 2022. Methodology for data-driven predictive maintenance models design, development and implementation on manufacturing guided by domain knowledge. Int. J. Comput. Integr. Manuf. (2022), 125. Google ScholarGoogle ScholarCross RefCross Ref
  135. [135] Shaheen Basheer, Kocsis Ádám, and Németh István. 2022. Data-driven failure prediction and RUL estimation of mechanical components using accumulative artificial neural networks. Eng. Appl. Artif. Intell. 119, (2022). Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. [136] Shankar S., Mohanraj T., and Rajasekar R.. 2019. Prediction of cutting tool wear during milling process using artificial intelligence techniques. Int. J. Comput. Integr. Manuf. 32, 2 (2019), 174182. Google ScholarGoogle ScholarCross RefCross Ref
  137. [137] Sharma Rohit, Shishodia Anjali, Gunasekaran Angappa, Min Hokey, and Haque Munim Ziaul. 2022. The role of artificial intelligence in supply chain management: Mapping the territory. Int. J. Prod. Res. (2022). Google ScholarGoogle ScholarCross RefCross Ref
  138. [138] Shcherbakov Maxim and Sai Cuong. 2022. A hybrid deep learning framework for intelligent predictive maintenance of cyber-physical systems. ACM Trans. Cyber-Physical Syst. 6, 2 (2022), 122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  139. [139] Si Xiao-Sheng, Zhang Zheng-Xin, and Hu Chang-Hua. 2017. Data-Driven Remaining Useful Life Prognosis Techniques: Stochastic Models, Methods and Applications. Springer Verlag, Berlin.Google ScholarGoogle ScholarCross RefCross Ref
  140. [140] Siddhpura A. and Paurobally R.. 2013. A review of flank wear prediction methods for tool condition monitoring in a turning process. Int. J. Adv. Manuf. Technol. 65, 1–4 (2013), 371393. http://10.0.3.239/s00170-012-4177-1Google ScholarGoogle ScholarCross RefCross Ref
  141. [141] Sikorska J. Z., Hodkiewicz M., and Ma L.. 2011. Prognostic modelling options for remaining useful life estimation by industry. Mech. Syst. Signal Process. 25, (2011), 18031836. Google ScholarGoogle ScholarCross RefCross Ref
  142. [142] Siqueira Frank and Davis Joseph G.. 2021. Service computing for industry 4.0: State of the art, challenges, and research opportunities. ACM Comput. Surv. 54, 9 (2021). Google ScholarGoogle ScholarDigital LibraryDigital Library
  143. [143] Sobie Cameron, Freitas Carina, and Nicolai Mike. 2018. Simulation-driven machine learning: Bearing fault classification. Mech. Syst. Signal Process. 99, (January 2018), 403419. http://10.0.3.248/j.ymssp.2017.06.025Google ScholarGoogle ScholarCross RefCross Ref
  144. [144] Soualhi Moncef, Nguyen Khanh T. P., Soualhi Abdenour, Medjaher Kamal, and Hemsas Kamel Eddine. 2019. Health monitoring of bearing and gear faults by using a new health indicator extracted from current signals. Meas. J. Int. Meas. Confed. 141, (2019), 3751. Google ScholarGoogle ScholarCross RefCross Ref
  145. [145] Stetco Adrian, Dinmohammadi Fateme, Zhao Xingyu, Robu Valentin, Flynn David, Barnes Mike, Keane John, and Nenadic Goran. 2019. Machine learning methods for wind turbine condition monitoring: A review. Renew. Energy an Int. J. 133, (April 2019), 620635. http://10.0.3.248/j.renene.2018.10.047Google ScholarGoogle ScholarCross RefCross Ref
  146. [146] Suawa Priscile, Meisel Tenia, Jongmanns Marcel, Huebner Michael, and Reichenbach Marc. 2022. Modeling and fault detection of brushless direct current motor by deep learning sensor data fusion. Sensors 22, 9 (2022), 117. Google ScholarGoogle ScholarCross RefCross Ref
  147. [147] Suefusa Kaori, Nishida Tomoya, Dohi Kota, Endo Takashi, Yamamoto Masaaki, and Kawaguchi Yohei. 2020. Anomalous sound detection based on machine activity detection. Eur. Signal Process. Conf. (2020), 269273. Google ScholarGoogle ScholarCross RefCross Ref
  148. [148] Sugumaran V. and Ramachandran K. I.. 2011. Effect of number of features on classification of roller bearing faults using SVM and PSVM. Expert Syst. Appl. 38, 4 (April 2011), 40884096. http://10.0.3.248/j.eswa.2010.09.072Google ScholarGoogle ScholarDigital LibraryDigital Library
  149. [149] Suhail Sabah, Hussain Rasheed, Jurdak Raja, Oracevic Alma, Salah Khaled, Seon Hong Choong, and Matulevičius Raimundas. 2022. Blockchain-based digital twins: Research trends, issues, and future challenges. ACM Comput. Surv. (2022). Google ScholarGoogle ScholarDigital LibraryDigital Library
  150. [150] Tao Zhengrui, An Qinglong, Liu Gongyu, and Chen Ming. 2019. A novel method for tool condition monitoring based on long short-term memory and hidden Markov model hybrid framework in high-speed milling Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 105, 7/8 (December 2019), 31653182. http://10.0.3.239/s00170-019-04464-wGoogle ScholarGoogle ScholarCross RefCross Ref
  151. [151] Thomé Antônio Márcio Tavares, Scavarda Luiz Felipe, and Scavarda Annibal José. 2016. Conducting systematic literature review in operations management. Prod. Plan. Control 27, 5 (2016), 408420. Google ScholarGoogle ScholarCross RefCross Ref
  152. [152] Nishat Toma Rafia, Piltan Farzin, and Myon Kim Jong. 2021. A deep autoencoder-based convolution neural network framework for bearing fault classification in induction motors. Sensors 21, 24 (2021). Google ScholarGoogle ScholarCross RefCross Ref
  153. [153] Torabi Amin J., Joo Er Meng, Li Xiang, and Siong Lim Beng. 2016. Sequential fuzzy clustering based dynamic fuzzy neural network for fault diagnosis and prognosis. Neurocomputing 196, (July 2016), 3141. http://10.0.3.248/j.neucom.2016.02.036Google ScholarGoogle ScholarDigital LibraryDigital Library
  154. [154] Tran Van Tung, Thom Pham Hong, Yang Bo-Suk, and Nguyen Tan Tien. 2012. Machine performance degradation assessment and remaining useful life prediction using proportional hazard model and support vector machine. Mech. Syst. Signal Process. 32, (October 2012), 320330. http://10.0.3.248/j.ymssp.2012.02.015Google ScholarGoogle ScholarCross RefCross Ref
  155. [155] Tranfield David, Denyer David, and Smart Palminder. 2003. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br. J. Manag. 14, (2003), 207222.Google ScholarGoogle ScholarCross RefCross Ref
  156. [156] Udmale Sandeep S. and Singh Sanjay Kumar. 2019. Application of spectral kurtosis and improved extreme learning machine for bearing fault classification. IEEE Trans. Instrum. Meas. 68, 11 (November 2019), 42224233. http://10.0.4.85/TIM.2018.2890329Google ScholarGoogle ScholarCross RefCross Ref
  157. [157] Udmale Sandeep S., Singh Sanjay Kumar, and Bhirud Sunil G.. 2019. A bearing data analysis based on kurtogram and deep learning sequence models. Meas. 145, (October 2019), 665677. http://10.0.3.248/j.measurement.2019.05.039Google ScholarGoogle ScholarCross RefCross Ref
  158. [158] Pablo Usuga-Cadavid Juan, Lamouri Samir, Grabot Bernard, and Fortin Arnaud. 2021. Using deep learning to value free-form text data for predictive maintenance. Int. J. Prod. Res. 0, 0 (2021), 128. Google ScholarGoogle ScholarCross RefCross Ref
  159. [159] Utah M. N. and Jung J. C.. 2020. Fault state detection and remaining useful life prediction in AC powered solenoid operated valves based on traditional machine learning and deep neural networks. Nucl. Eng. Technol. 52, 9 (2020), 19982008. Google ScholarGoogle ScholarCross RefCross Ref
  160. [160] Varghese Alwin, Kulkarni Vinay, and Joshi Suhas S.. 2021. Tool life stage prediction in micro-milling from force signal analysis using machine learning methods. J. Manuf. Sci. Eng. Trans. ASME 143, 5 (2021), 17. Google ScholarGoogle ScholarCross RefCross Ref
  161. [161] Velmurugan R. S. and Dhingra Tarun. 2015. Maintenance strategy selection and its impact in maintenance function: A conceptual framework. Int. J. Oper. Prod. Manag. 35, 12 (2015), 16221661. Google ScholarGoogle ScholarCross RefCross Ref
  162. [162] Vernekar Kiran, Kumar Hemantha, and K. V Gangadharan. 2018. Engine gearbox fault diagnosis using machine learning approach. J. Qual. Maint. Eng. 24, 3 (July 2018), 345357. http://10.0.4.84/JQME-11-2015-0058Google ScholarGoogle ScholarCross RefCross Ref
  163. [163] Wakiru James M., Pintelon Liliane, Muchiri Peter N., and Chemweno Peter K.. 2019. A review on lubricant condition monitoring information analysis for maintenance decision support. Mech. Syst. Signal Process. 118, (March 2019), 108132. http://10.0.3.248/j.ymssp.2018.08.039Google ScholarGoogle ScholarCross RefCross Ref
  164. [164] Wang Fu-Kwun and Mamo Tadele. 2019. Hybrid approach for remaining useful life prediction of ball bearings. Qual. Reliab. Eng. Int. 35, 7 (November 2019), 24942505. http://10.0.3.234/qre.2538Google ScholarGoogle ScholarCross RefCross Ref
  165. [165] Wang Jin-Jiang, Zheng Ying-Hao, Zhang Lai-Bin, Duan Li-Xiang, and Zhao Rui. 2017. Virtual sensing for gearbox condition monitoring based on kernel factor analysis. Pet. Sci. 14, 3 (August 2017), 539548. http://10.0.3.239/s12182-017-0163-4Google ScholarGoogle ScholarCross RefCross Ref
  166. [166] Wang Jinjiang, Xie Junyao, Zhao Rui, Zhang Laibin, and Duan Lixiang. 2017. Multisensory fusion based virtual tool wear sensing for ubiquitous manufacturing. Robot. Comput. Manuf. 45, (June 2017), 4758. http://10.0.3.248/j.rcim.2016.05.010Google ScholarGoogle ScholarDigital LibraryDigital Library
  167. [167] Wang Mei and Wang Jie. 2012. CHMM for tool condition monitoring and remaining useful life prediction. International J. Adv. Manuf. Technol. 59, (2012), 463471. Google ScholarGoogle ScholarCross RefCross Ref
  168. [168] Wang Peng, Ananya, Yan Ruqiang, and Gao Robert X.. 2017. Virtualization and deep recognition for system fault classification. J. Manuf. Syst. 44, (April 2017), 310316. Google ScholarGoogle ScholarCross RefCross Ref
  169. [169] Wang Peng and Gao Robert X.. 2020. Transfer learning for enhanced machine fault diagnosis in manufacturing. CIRP Ann. 69, 1 (2020), 413416. Google ScholarGoogle ScholarCross RefCross Ref
  170. [170] Wang Youdao, Zhao Yifan, and Addepalli Sri. 2020. Remaining useful life prediction using deep learning approaches: A review. Procedia Manuf. 49 (2020), 8188. Google ScholarGoogle ScholarCross RefCross Ref
  171. [171] Welte Dominik, Sikora Axel, Schonle Daniel, Stodt Jan, and Reich Christoph. 2020. Blockchain at the shop floor for maintenance. Proc. - 2020 Int. Conf. Cyber-Enabled Distrib. Comput. Knowl. Discov. CyberC. 2020 0, (2020), 1522. Google ScholarGoogle ScholarCross RefCross Ref
  172. [172] Wu Dazhong, Jennings Connor, Terpenny Janis, Kumara Soundar, and Gao Robert X.. 2018. Cloud-based parallel machine learning for tool wear prediction. J. Manuf. Sci. Eng. 140, 4 (April 2018), 110. http://10.0.4.91/1.4038002Google ScholarGoogle ScholarCross RefCross Ref
  173. [173] Wu Ji Yan, Wu Min, Chen Zhenghua, Li Xiaoli, and Yan Ruqiang. 2021. A joint classification-regression method for multi-stage remaining useful life prediction. J. Manuf. Syst. 58, PA (2021), 109119. Google ScholarGoogle ScholarCross RefCross Ref
  174. [174] Xia Min, Li Teng, Liu Lizhi, Xu Lin, and Silva Clarence W. de. 2017. Intelligent fault diagnosis approach with unsupervised feature learning by stacked denoising autoencoder. IET Sci. Meas. Technol. 11, 6 (September 2017), 687695. http://10.0.4.25/iet-smt.2016.0423Google ScholarGoogle ScholarCross RefCross Ref
  175. [175] Yang Hongyu, Mathew Joseph, and Ma Lin. 2007. Basis pursuit-based intelligent diagnosis of bearing faults. J. Qual. Maint. Eng. 13, 2 (2007), 152162. Google ScholarGoogle ScholarCross RefCross Ref
  176. [176] Yeardley Aaron, Ejeh Jude, Allen Louis, Brown Solomon, and Cordiner Joan. 2022. Integrating machine learning techniques into optimal maintenance scheduling. Comput. Chem. Eng. 166, (2022). Google ScholarGoogle ScholarCross RefCross Ref
  177. [177] Younus Ali Md., Widodo Achmad, and Yang Bo-Suk. 2010. Evaluation of thermography image data for machine fault diagnosis. Nondestruct. Test. Eval. 25, 3 (September 2010), 231247. http://10.0.4.56/10589750903473617Google ScholarGoogle ScholarCross RefCross Ref
  178. [178] Yunusa-Kaltungo Akilu and Cao Ruifeng. 2020. Towards developing an automated faults characterisation framework for rotating machines. Part 1: Rotor-Related Faults. Energies (2020). Google ScholarGoogle ScholarCross RefCross Ref
  179. [179] Zeng Fuchuan, Li Yiming, Jiang Yuhang, and Song Guiqiu. 2021. An online transfer learning-based remaining useful life prediction method of ball bearings. Meas. J. Int. Meas. Confed. 176, (February 2021), 109201. Google ScholarGoogle ScholarCross RefCross Ref
  180. [180] Zenisek Jan, Holzinger Florian, and Affenzeller Michael. 2019. Machine learning based concept drift detection for predictive maintenance. Comput. Ind. Eng. 137, (August 2019), Google ScholarGoogle ScholarCross RefCross Ref
  181. [181] Zhai Simon, Gehring Benedikt, and Reinhart Gunther. 2021. Enabling predictive maintenance integrated production scheduling by operation-specific health prognostics with generative deep learning. J. Manuf. Syst. (January 2021). Google ScholarGoogle ScholarCross RefCross Ref
  182. [182] Zhang Chong, Tan Kay Chen, Li Haizhou, and Hong Geok Soon. 2019. A cost-sensitive deep belief network for imbalanced classification. IEEE Trans. Neural Networks Learn. Syst. 30, 1 (2019), 109122. Google ScholarGoogle ScholarCross RefCross Ref
  183. [183] Zhang Jiusi, Jiang Yuchen, Wu Shimeng, Li Xiang, Luo Hao, and Yin Shen. 2022. Prediction of remaining useful life based on bidirectional gated recurrent unit with temporal self-attention mechanism. Reliab. Eng. Syst. Saf. 221, December 2021 (2022), Google ScholarGoogle ScholarCross RefCross Ref
  184. [184] Zhang Weiting, Yang Dong, and Wang Hongchao. 2019. Data-driven methods for predictive maintenance of industrial equipment: A survey. IEEE Syst. J. 13, 3 (2019), 22132227. Google ScholarGoogle ScholarCross RefCross Ref
  185. [185] Zhang Xinghui, Xiao Lei, and Kang Jianshe. 2014. Application of an improved Levenberg-Marquardt back propagation neural network to gear fault level identification. J. Vibroengineering 16, 2 (March 2014), 855868. http://search.ebscohost.com/login.aspx?direct=true&db=afh&AN=95382647&site=ehost-liveGoogle ScholarGoogle Scholar
  186. [186] Zhao Dongdong and Liu Feng. 2022. Cross-condition and cross-platform remaining useful life estimation via adversarial-based domain adaptation. Sci. Rep. 12, 1 (2022), 113. Google ScholarGoogle ScholarCross RefCross Ref
  187. [187] Zonta Tiago, André da Costa Cristiano, da Rosa Righi Rodrigo, Lima Miromar José de, Silveira da Trindade Eduardo, and Li Guann Pyng. 2020. Predictive maintenance in the Industry 4.0: A systematic literature review. Comput. Ind. Eng. 150, (August 2020), 106889. Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Tackling Industrial Downtimes with Artificial Intelligence in Data-Driven Maintenance

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Computing Surveys
          ACM Computing Surveys  Volume 56, Issue 4
          April 2024
          1026 pages
          ISSN:0360-0300
          EISSN:1557-7341
          DOI:10.1145/3613581
          • Editor:
          • Albert Zomaya
          Issue’s Table of Contents

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 23 October 2023
          • Online AM: 8 September 2023
          • Accepted: 21 August 2023
          • Revised: 13 July 2023
          • Received: 19 August 2022
          Published in csur Volume 56, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • survey
        • Article Metrics

          • Downloads (Last 12 months)561
          • Downloads (Last 6 weeks)68

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Full Text

        View this article in Full Text.

        View Full Text